viernes, enero 03, 2014

Glía promotora del crecimiento derivada de células madre neurales: un instrumento de reparación del trauma medular

Capítulo 1
Capítulo 2









Capítulo 6


Capítulo 7

12.  Migración e interacciones neurona sensorial-aldainoglía:
 
Las interacciones entre aldainoglía y neuronas incluyen: quimio-atracción, promoción de la migración, promoción del crecimiento neuritico y envoltura rápida y reversible de las fibras nerviosas (Nieto- Sampedro 2003). La disponibilidad de ratones transgénicos marcados con proteina fluorescente verde (GFP),  hizo posible la preparación de neuroesferas de ratón-GFP, diferenciarlas a GFP-aldainoglía y estudiar su interacción con neuritas de DRG mediante microscopía confocal. El cco-cultivo de DRGs con neuroesferas causó una migración extensiva de las células de DRG, tal que tras dos semanas, los límites de los ganglios desaparecen (Fig. 8e). Por contra, DRG control, mantenidos durante ese mismo período en medio NB27 solo, retuvieron lsu integridad, con una migración mínima de las células ganglionares (Fig. 8a).

Figura 8.


Cuando DRG de rata fueron cultivados junto con neuroesferas de ratón-GFP, las células verdes de las neuroesferas migraron hacia los ganglios, invadiéndolos (Fig. 11 b, d). Se observaron neuronas neurofilamento-positivas, en las cercanías de la superficie de los ganglios, rodeadas por aldainoglía-GFP derivada de las neuroesferas (Fig. 11d). La ausencia de células GFP-positivas y sus núcleos teñidos por Hoechst del substrato alrededor de los DRGs (Fig.11 a-e), fué debida a la migración masiva de la aldainoglía-GFP hacia los DRGs (Fig 11 a-b, f, h).  Los contactos aldainoglía-neurona fueron observados en los DRGs como fluorescencia color naranja-amarillo, producto de la mezcla de GFP verde e inmunotinción roja de neurofilamentos (Fig.11 d).  Casi todas las neuronas de los DRGs estaban en contacto con células de aldainoglía, como indican las manchas blancas, que muestran el solapamiento de las tinciones (programa NIH ImageJ; Fig.11 e).  En los ganglios, todos los somas neuronales se observaron en contacto con aldainoglía, aunque no se observo claramente la envoltura por las células gliales-GFP. Sin embargo, las fibras neurofilamento-positivas que emergen de los DRGs aparecían siempre totalmente envueltas por GFP- aldainoglía (Fig.11 f-q). Las fibras de los DRGs se muestran como as fascículos de fibras neurofilamento-positivas (Fig.11 g, k, o), envueltas por la GFP- aldainoglía (Fig.11 h, i, l, m, p, q). En sección confocal transversal las fibras envueltas se observan como un neurofilamento central rodeado por GFP-aldainoglía (Fig.11 n-q). Los núcleos de algunas células de aldainoglía estan alineados a lo largo de las fibras nerviosas envueltas (Fig.11 j-m, r-u). Los contactos intimos observados neurita-glia, estan justificados por la fuerte sobre-expresión de las moléculas de adhesión en la aldainoglía con respecto a las neuroesferas (Tabla 1). Las neuritas que crecieron de los DRGs fueron mas largas que el diámetro de un ganglio, aparentemente prefiriendo interaccionar con las células similares a aldainoglía sobre las otras células presentes, incluidas las células de Schwann ganglionares (Fig.11 g-i, k-m, n-q, r-u).  De-fasciculación de las neuritas fue observada en las porciones de las neuritas mas alejadas de los  ganglios (Fig.11 g, h, k, l).
Figura 11.


13. La aldainoglía normaliza la glia reactiva:
 
El transplante de GEBO en la médula espinal de la rata lesionada fotoquímicamente disminuyó la reactividad astrocitaria y la cavitación en el parenquima medular. Una lesión fotoquímica a nivel T12-L1 produjo un daño  tan severo en la médula espinal que los primeros 15 días postlesión todas las ratas arrastraron sus miembros posteriores y no respondieron a estímulos mecánicos (pinprick).  El area y volumen máximos de las cavidades quísticas fueron menores en ratas transplantadas GEBO que en las no transplantadas, con valores no significativos en el sitio de lesión T12-L1, pero muy significativo en los niveles medulares T9-T10 y L4-L6 (Verdú y col., 2001). La densidad de astrocitos en la sustancia gris medular fué similar en ratas no-transplantadas y transplantadas  en los niveles T12-L1 y L4-L6, pero más baja en las transplantadas en el nivel T9-T10.  En los animales lesionados y no transplantados, todos los astrocitos mostraron una apariencia hipertrófica, con procesos largos y robustos fuertemente GFAP-positivos, y sobre-expresion de proteoglicanos inhibitores de neuritogenesis.  Por contra, en las ratas transplantadas solo unos pocos astrocitos mostraron hipertrofia y la majoría mostró procesos cortos y finos (Verdú y col., 2001). Estos resultados indican que los transplantes de GEBO en la médula adulta lesionada, ejercen un efecto neuroprotector, reduciendo la gliosis astrocitica y la cavitatión quística.

14. Conclusión: la aldainoglía es un precursor neural:
 
Neuronas, astrocitos y oligodendrocitos pueden ser producidos en cultivo a partir de neuroesferas estimuladas con los factores de crecimiento adecuados (Merkle et al. 2004; Vicario-Abejón et al. 2003).  La expresión de niveles constantes de nestina, el aumento de GFAP periférica y la presencia de otros marcadores gliales in vitro, apoyan la hipótesis de que un precursor de naturaleza glial es un paso intermedio en la diferenciación desde neuroesferas a los diversos tipos de célula neural (Merkle et al. 2004).

Un precursor común de neuronas y astrocitos que expresa nestina y GFAP, ha sido encontrado en mamíferos postnatales y adultos (Wei et al. 2002).  Neuroesferas embrionarias se diferenciaron a neuronas, astrocitos y oligodendrocitos tras 10 dias en cultivo (Fujiwara et al. 2004).  Nosotros hemos mostrado que células similares a aldainoglía pueden ser generadas a partir de neuroesferas embrionarias en un periodo de tiempo más corto (48 horas) por tratamiento con medio condicionado por GEBO (Doncel-Perez y col., 2009).  La presencia de aldainoglía en el SNC adulto (Gudiño-Cabrera and Nieto-Sampedro 2000) abre la posibilidad de generar los diversos fenotipos neurales in situ, mediante la estimulación adecuada de la población de aldainoglía residente.  La localización de estas células precursoras neurales in situ puede establecerse con los marcadores aquí descritos.


Tabla 1


15. REFERENCIAS

Ader M, Meng J, Schachner M, Bartsch U. 2000. Formation of myelin after transplantation of neural precursor cells into the retina of young postnatal mice. Glia 30:301-310.
 
Alexander CL, Fitzgerald UF, Barnett SC (2002) Identification of growth factors that promote long-term proliferation of olfactory ensheathing cells and modulate their antigenic phenotype. Glia 37: 349-364.
 
Andrews MR, Stelzner DJ (2002) Studies of OEC-mediated regeneration after partial spinal injury in adult rat: a progress report. Soc Neurosci Abstr 133.3.
 
Arenander, A. y de Vellis, J. (1983) Frontiers of Glial Physiology.  In The Clinical Neurosciences (R. Rosenberg, ed., section V).  Churchill Livingstone, New York, pp.53-91.
 
Au E, Roskams AJ (2002) Culturing olfactory ensheathing glia from the mouse olfactory epithelium. Methods Mol Biol 198: 49-54.
 
Au E, Roskams AJ (2003) Olfactory ensheathing cells of the lamina propria in vivo and in vitro. Glia 41: 224-236.
 
Barnett SC, Alexander CL, Iwashita Y, Gilson JM, Crowther J, Clark L, Dunn LT, Papanastassiou V, Kennedy PG, Franklin RJ (2000) Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain 123: 1581-1588.
 
Barnett SC, Hutchins AM, Noble M (1993) Purification of olfactory nerve ensheathing cells from the olfactory bulb. Dev Biol 155: 337-350.
 
Barnett SC, Roskams AJ (2002) Olfactory ensheathing cells. Isolation and culture from the rat olfactory bulb. Methods Mol Biol 198: 41-48.
Bernal G, Vawter M, Nistor G, Gorjian A, Mendoza C, Espinosa J, McIntyre C, Keirstead H (2002) Transplantation of human olfactory ensheathing cells in the injured adult rat spinal cord. Soc Neurosci Abstr 204.16.
 
Bradbury, E. J., Moon, L.D.F., Popat, R.J., King, V.R., Bennett, G.S., Patel, P.N., Fawcett, J.W. and McMahon, S.B. (2002)  Chondroitinase ABC promotes functional recovery after spinal cord injury.  Nature 416: 636-640.
 
Brustle O, Choudhary K, Karram K, Huttner A, Murray K, Dubois-Dalcq M, McKay RD. (1998). Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nature Biotechnol. 16: 1040-1044.
 
Burden S. and Yarden, Y. (1997). Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron 18: 847-855.
 
Camby I, Lefranc F, Titeca G, Neuci S, Fastrez M, Dedecken L, Schafer BW, Brotchi J, Heizmann CW, Pochet R, Salmon I, Kiss R, Decaestecker C. (2000). Differential expression of S100 calcium-binding proteins characterizes distinct clinical entities in both WHO grade II and III astrocytic tumours. Neuropathol Appl Neurobiol 26:76-90.
 
Cantó-Nogués C, Pita-Thomas W, Martín-López E, Valle-Argós B and Nieto-Sampedro M (2006) A soluble factor produced by astrocytes causes bone marrow stromal cells to differentiate in vitro to neural stem cells.  Submitted.
 
Carpenter, M.K., Winkler, C., Fricker, R., Emerich, D.F., Wong, S.C., Greco, C., 
 Chen, E.Y., Chu Y., Kordower, J.H., Messing, A., Bjorklund, A., Hammang, J.P. (1997). Generation and transplantation of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice. Exp Neurol. 148:187-204.
 
Carraway, K.L., 3rd and Burden, S.J. (1995). Neuregulins and their receptors. Curr Opin Neurobiol 5:606-612.
 
Chen J, Li Y, Wang L, Lu M, Zhang X and Chopp  M (2001) Therapeutic benefits  of intracerebral transplantation of bone-marrow stromal cells aftercerebral ischemia in rats.  J Neurol.Sci. 189: 49-57.
 
Collazos-Castro, J.E., López-Dolado, E and Nieto-Sampedro, M. (2005) Locomotor Deficits and Adaptive Mechanisms after ThoracicSpinal Cord Contusion in the Adult Rat. J. Neurotrauma 23(1) 18pp.
 
Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, Gage FH and Anderson AJ (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice.  Proc. Nat. Acad. Sci. 102: 14069-14074.
 
Devon R, Doucette R (1992) Olfactory ensheathing cells myelinate dorsal root ganglion neurites. Brain Res 589: 175-179.
Dobkin B.H., Havton, L.A. (2004) Basic advances and new avenues in therapy of spinal cord injury. Annu Rev Med 55:255-282.
 
Donato R. (1999). Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1450(3):191-231.
Doncel-Pérez, E., Caballero-Chacón, S. and Nieto-Sampedro, M (2009) Neurosphere cell differentiation to aldynoglia promoted by olfactory ensheathing cell conditioned medium. Glia 53: 1393-1409 .
 
Doucette J.R.1984. The glial cells in the nerve fiber layer of the rat olfactory bulb. Anat Rec 210: 385-391.
 
Eckert RL, Broome AM, Ruse M, Robinson N, Ryan D, Lee K. (2004). S100 proteins in the epidermis. J Invest Dermatol 123(1):23-33.
 
Edlund,T. and Jessell, T.M. (1999) Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell. 22:211-24.
 
Englund U, Bjorklund A, Wictorin K. 2002a. Migration patterns and phenotypic differentiation of long-term expanded human neural progenitor cells after transplantation into the adult rat brain. Brain Res Dev Brain Res 134(1-2):123-141.
 
 Englund U, Fricker-Gates RA, Lundberg C, Bjorklund A, Wictorin K. 2002b. Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections. Exp Neurol 173:1-21.
 
Espinosa-Jeffrey A, Becker-Catania SG, Zhao PM, Cole R, Edmond J, de Vellis 
J. (2002) Selective specification of CNS stem cells into oligodendroglial or neuronal cell lineage: cell culture and transplant studies. J Neurosci Res. 69:810-825.
 
Feinstein DL, Weinmaster GA, Milner RJ. (1992). Isolation of cDNA clones encoding rat glial fibrillary acidic protein: expression in astrocytes and in Schwann cells. J Neurosci Res 32:1-14.
 
Féron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart, Geraghty T and Mackay-Sim A (2006) Autologous olfactory ensheathing cell transplantation in human spinal cord injury.  Brain, in press.
 
Fouad K,Schnell  L, Bunge MB, Schwab ME, Liebscher T,and Pearse DD (2005) Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord.  J Neurosci. 25: 1169-1178.
 
Fricker RA, Carpenter MK, Winkler C, Greco C, Gates MA, Bjorklund A. 1999. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J Neurosci. 19: 5990-6005.
 
Frizzo JK, Tramontina F, Bortoli E, Gottfried C, Leal RB, Lengyel I, Donato R, Dunkley PR, Goncalves CA. 2004. S100B-mediated inhibition of the phosphorylation of GFAP is prevented by TRTK-12. Neurochem Res 29:735-740.
 
Fujiwara Y, Tanaka N, Ishida O, Fujimoto Y, Murakami T, Kajihara H, Yasunaga Y, Ochi M. 2004. Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neurosci Lett 366: 287-291.
 
Gage, F.H. 2000. Mammalian neural stem cells. Science 287:1433-1438.
 
Gessl A., Krugluger, W., Langer, K., Baumgartner, I., Spittler, A., Grabner, G., 
Forster, O. and Boltz-Nitulescu, G. (1995). Expression of MHC class II antigens on rat bone marrow cells and macrophages, and their modulation during culture with murine GM-CSF or M-CSF. Immunobiology 192:185-197.
 
Góritz, C., Dias, D.O., Tomilin, N., Barbacid M., Shupliakov, O. and Frisen, J. (2011) A pericyte origin of spinal cord scar tissue.  Science 333: 238-242.
 
Graziadei GA, Graziadei PP (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy. J Neurocytol 8: 197-213.
 
Gudiño-Cabrera, G. and Nieto-Sampedro, M. (1999) Estrogen receptor immunoreactivity in Schwann-like brain macroglia. J. Neurobiol. 40: 458-470.
Gudiño-Cabrera, G. and Nieto-Sampedro, M. (2000) Schwann-like growth-promoting macroglia in adult rat brain. Glia 30:49-63.
 
Harding J, Graziadei PP, Monti Graziadei GA, Margolis FL (1977) Denervation in the primary olfactory pathway of mice. IV. Biochemical and morphological evidence for neuronal replacement following nerve section. Brain Res 132: 11-28.
 
Heizmann CW. (1999). Ca2+-binding S100 proteins in the central nervous system. Neurochem Res 24(9):1097-1100.
 
Hori J, Ng TF, Shatos M, Klassen H, Streilein JW, Young MJ. (2003). Neural progenitor cells lack immunogenicity and resist destruction as allografts. Stem Cells 21:405-416.
 
Hurt P, Walter L, Sudbrak R, Klages S, Muller I, Shiina T, Inoko H, Lehrach H, Gunther E, Reinhardt R, Himmelbauer H. 2004. The genomic sequence and comparative analysis of the rat major histocompatibility complex. Genome Res 14:631-639.
 
Imaizumi T, Lankford KL, Kocsis JD (2000) Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord. Brain Research 854: 70-78.
 
Kato T, Honmou O, Uede T, Hashi K. and Kocsis JD (2000) Transplantation of human olfactory ensheathing cells elicits remyelination of demyelinated rat spinal cord. Glia 30: 209-218.
 
Lakatos, A., Smith, P.M., Barnett S.C. and Franklin, RJ (2003) Meningeal cells enhance limited CNS remyelination by transplanted olfactory ensheathing cells. Brain 126: 598-609.
 
Le Belle JE, Svendsen CN. 2002.Stem cells for neurodegenerative disorders: where can we go from here? BioDrugs 16:389-401.
 
Lee VM-Y PH-l, Shalaepfer WW. (1984). Monoclonal antibodies to gel-excised glial filament protein and their activities with other intermediate filament proteins. J. Neurochem. 42: 25-32.
 
Lewis LM, Au E, Flynn E, Liu J, Tetzlaff W, Roskams AJ (2003) Transplantation of GFP-positive mouse olfactory mucosa-derived ensheathing cells in to the rat spinal cord. Soc. Neurosci. Abstr. 34.16.
 
Li Y, Decherchi P, Raisman G (2003) Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing. J Neurosci.  23: 727-731.
 
Li Y, Field PM, Raisman G (1997) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277: 2000-2002.
 
Li Y, Field PM, Raisman G (1998) Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J. Neurosci. 18: 10514-10524.
 
Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, Gallacher, L., Ferber I, Lebkowski J, Martin T., Madrenas, J., Bhatia, M. (2004). Human embryonic stem cells possess immune-privileged properties. Stem Cells 22(4):448-456.
 
López-Vales,R., Forès, J., Navarro,X. and Verdú, E. (2007) Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat. Glia 55: 303–311.
 
Lu J, Feron F, Ho SM, Mackay-Sim A. and Waite, P.M. (2001) Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain Res 889: 344-357.
 
Lu J, Feron F, Mackay-Sim, A. and Waite, P.M. (2002) Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain 125: 14-21.
 
Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A. (2004). Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A 101:17528-17532.
 
Metzger R, Parasta A, Joppich I, Till H. (2002). Organ-specific maturation of the major histocompatibility antigens in rats. Pediatr Surg Int 18: 640-647.
 
Nash H.H., Borke R.C. and Anders, J.J. (2001) New method of purification for establishing primary cultures of ensheathing cells from the adult olfactory bulb. Glia 34: 81-87.
 
Nash, H.H., Borke, R.C. and Anders, J.J. (2002) Ensheathing cells and methylprednisolone promote axonal regeneration and functional recovery in the lesioned adult rat spinal cord. J Neurosci 22: 7111-7120.
 
Navarro X, Valero A, Gudiño G, Fores J, Rodriguez FJ, Verdu E, Pascual R, Cuadras, J. and Nieto-Sampedro, M (1999) Ensheathing glia transplants promote dorsal root regeneration and spinal reflex restitution after multiple lumbar rhizotomy. Ann Neurol 45: 207-215.
 
Nieto-Sampedro, M. (1988a)  Growth factor induction and order of events in CNS repair.  In Pharmacological approaches to the treatment of brain and spinal cord injury.  (eds. D.G.Stein and B.A. Sabel).  Plenum Press, New York, pp.301-337.
 
Nieto-Sampedro M. 2002. CNS Schwann-like glia and functional restoration of damaged spinal cord. Prog Brain Res 136:303-318.
 
Nieto-Sampedro M. 2003. Central nervous system lesions that can and those that cannot be repaired with the help of olfactory bulb ensheathing cell transplants.  Neurochem Res 28(11):1659-1676.
 
Pascual JI, Gudiño-Cabrera G, Insausti R, Nieto-Sampedro M (2002) Spinal implants of olfactory ensheathing cells promote axon regeneration and bladder activity after bilateral lumbosacral dorsal rhizotomy in the adult rat. J Urol 167: 1522-1526.
 
Pixley SK (1992) The olfactory nerve contains two populations of glia, identified both in vivo and in vitro. Glia 5: 269-284.
Pixley, S.K.R., Nieto-Sampedro, M., and C.W. Cotman. 1987. Preferential adhesion of brain astrocytes to laminin and central neurites to astrocytes. J. Neeurosci. Res. ,18: 402-406.
 
Plant GW, Christensen CL, Oudega M, Bunge MB (2003) Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord. J Neurotrauma 20: 1-16.
 
Plant GW, Currier PF, Cuervo EP, Bates ML, Pressman Y, Bunge MB, Wood PM (2002a) Purified Adult Ensheathing Glia Fail to Myelinate Axons under Culture Conditions that Enable Schwann Cells to Form Myelin. J Neurosci 22: 6083-6091.
 
Plant GW, Levison DB, Ruitenberg MJ, Harvey AR, Verhaagen J (2002b) Transplantation of adenoviral-NT3 transduced olfactory ensheathing glia induces axonal growth of corticospinal tract axons after a cervical lesion of the spinal cord. Soc Neurosci Abstr 334.7.
 
Polentes, J., Stamegna, J.C, Nieto-Sampedro, M. and Gauthier, P. (2004) Phrenic rehabilitation and diaphragm recovery after cervical injury and transplantation of olfactory ensheathing cells. Neurobiol.Dis. 16: 638-653
 
Raisman G (2001) Olfactory ensheathing cells - another miracle cure for spinal cord injury? Nat Rev Neurosci 2: 369-375.
 
Ramón-Cueto A, Cordero MI, Santos-Benito FF, Avila J (2000) Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25: 425-435.
 
Ramón-Cueto A, Nieto-Sampedro M (1992) Glial cells from adult rat olfactory bulb: immunocytochemical properties of pure cultures of ensheathing cells. Neuroscience 47: 213-220.
 
Ramón-Cueto A, Nieto-Sampedro M (1994) Regeneration into the spinal-cord of transected dorsal-root axons is promoted by ensheathing glia transplants. Experimental Neurol. 127: 232-244.
 
Ramón-Cueto A, Plant GW, Avila J, Bunge MB (1998) Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci 18: 3803-3815.
 
Reynolds BA, Weiss S. 1992. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707-1710.
 
Riddell JS, Enriquez-Denton M, Toft A, Barnett SC (2002) Do pure olfactory ensheathing cell grafts promote functional regeneration of afferent fibres following dorsal root lesions? Soc Neurosci Abstr 635.2.
 
Rosser AE, Tyers P, Dunnett SB. (2000). The morphological development of neurons derived from EGF- and FGF-2-driven human CNS precursors depends on their site of integration in the neonatal rat brain. Eur J Neurosci 12(7):2405-2413.
 
Shen H, Tang Y, Wu Y, Chen Y, Cheng Z (2002) Influences of olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats. Chin J Traumatol 5: 136-141.
 
Smale KA, Doucette R, Kawaja MD (1996) Implantation of olfactory ensheathing cells in the adult rat brain following fimbria-fornix transection. Exp Neurol 137: 225-233.
 
Sorci G, Agneletti AL, Bianchi R, Donato R. (1998) Association of S100B with intermediate filaments and microtubules in glial cells. Biochim Biophys Acta 1448:277-289.
 
Takami T, Oudega M, Bates ML, Wood PM, Kleitman N, Bunge MB (2002) Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci 22: 6670-6681.
 
Taylor JS, Muñetón-Gómez VC, Eguía-Recuero R, Nieto-Sampedro M (2001) Transplants of olfactory bulb ensheathing cells promote functional repair of multiple dorsal rhizotomy. Prog Brain Res 132: 641-654.
Utzschneider DA, Archer DR, Kocsis JD, Waxman SG, Duncan ID (1994) Transplantation of glial-cells enhances action-potential conduction of amyelinated spinal-cord axons in the myelin- deficient rat. Proc .Nat.Acad.Sci. US   91: 53-57.
 
Verdú, E., Navarro, X., Gudiño-Cabrera, G., Rodríguez, F.J., Ceballos, D., Valero, A., and Nieto-Sampedro, M. (1999) Olfactory bulb ensheathing cells enhance peripheral nerve regeneration. NeuroReport 10: 1097-1101.
Verdú, E., García-Alías, G., Forés, J., Gudiño-Cabrera, G., Nieto-Sampedro, M., and Navarro, X. (2001) Effects of ensheathing cells transplanted into photochemically damaged spinal cord.  NeuroReport, 12: 2303-2309.
Vicario-Abejón C, Yusta-Boyo MJ, Fernandez-Moreno C, de Pablo F. (2003). Locally born olfactory bulb stem cells proliferate in response to insulin-related factors and require endogenous insulin-like growth factor-I for differentiation into neurons and glia. J Neurosci 23: 895-906.
 
Warner EA. Deyoung DZ, Hoang, TX, Franchini BT, Westerlund U, Havton LA (2005). Differential distribution of growth associated protein (GAP-43) in the motor nuclei of the adult rat conus medullaris. Exp Brain Res 161(4):527-531.
Wei, L.C., Shi, M., Chen, L.W., Cao, R., Zhang, P., Chan, Y.S.(2002). Nestin-containing cells express glial fibrillary acidic protein in the proliferative regions of central nervous system of postnatal developing and adult mice. Brain Res Dev Brain Res 139: 9-17.
 
Yan, H., Bunge, M.B., Wood, P.M., Plant, G.W. (2001a) Mitogenic response of adult rat olfactory ensheathing glia to four growth factors. Glia 33: 334-342.
Yan, H., Nie, X. and Kocsis, J.D. (2001b) Hepatocyte growth factor is a mitogen for olfactory ensheathing cells. J Neurosci Res 66: 698-704.
Yan, H. and Rivkees, S.A. (2002) Hepatocyte growth factor stimulates the proliferation and migration of oligodendrocyte precursor cells. J Neurosci Res 69: 597-606.

Ziegler, D.R., Innocente, C.E., Leal, R.B., Rodnight, R. and Gonçalves, C.A. (1998). The S100B protein inhibits phosphorylation of GFAP and vimentin in a cytoskeletal fraction from immature rat hippocampus. Neurochem Res 23:1259-1263.




 

Palabras clave: Neuregulina / GFAP/ Vimentina/ Nestina / receptor de NGF p75 / Regeneración/ Microarrays


Abreviaturas:

bFGF, factor de crecimiento fibroblástico básico; E15, día embrionario 15; EGF, factor de crecimiento epidermal; MHC, complejo mayor de histocompatibilidad; NB27, medio neurobasal suplementado con B27; Nes, gen de nestina; GE-BO, glía envolvente del bulbo olfatorio; PLL , poli-L-lisina; SNC, sistema nervioso central.